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Abstract

We present some advances in the area of Linear Resource
Temporal Networks (LRTNs), which consist of activities that
consume or produce a resource linearly over the course of
their duration, subject to absolute and relative metric tempo-
ral constraints.
Previous work on LRTNs has shown how to construct tight
bounds for resource availability as a function of time. The
previous algorithm is pseudo-polynomial; in particular, the
complexity has two components involvingh, whereh is the
length of the scheduling horizon. However,h may be expo-
nential in number of activities, making this of limited use for
practical problems.
In this paper we build upon the previous results to prove a
Persistence Theorem showing that the set of activity pieces
that maximizes the availbility increases monotonically over
time. This provides a polynomial bound on the number of
slope changes and leads to an algorithm that eliminates one
of theh factors in the complexity of the previous algorithm.

Introduction
Developing acceptable schedules for tasks that must satisfy
temporal and resource constraints is a central problem of AI
with numerous practical applications. Building schedules by
ordering events rather than assigning event times preserves
temporal flexibility; this permits the construction of a family
of schedules without determining exactly when events take
place while still guaranteeing that feasible solutions exist.
Preserving flexibility has two potential advantages over find-
ing a “ground” schedule. The first advantage is protection
from uncertainty that can lead to costly rescheduling dur-
ing schedule execution. The creation of temporally flexible
plans to protect against some execution time uncertainty was
described in (Morris, Muscettola, & Tsamardinos 1998) and
was successfully used in controlling a spacecraft (Jónsson
et al. 2000). The second advantage is in speeding up the
search for a feasible schedule by seeking to avoid premature
commitments. This approach to scheduling was studied in
(Cheng & Smith 1995), (Laborie 2003a) and (Policellaet al.
2004).

Laborie (Laborie 2003b) describes a simple but expres-
sive formalism for scheduling problems calledResource
Temporal Networks(RTNs). Briefly, RTNs consist of a
Simple Temporal Network(STN) as described in (Dechter,

Meiri, & Pearl 1991), constant instantaneous resource im-
pacts (either production or consumption) for each timepoint,
and piecewise constant resource bounds. Instantaneous im-
pacts are useful for modelling reusable resources that are al-
located at the beginning of an activity and released at the
end, such as power usage on a planetary rover. In this
context, techniques have been developed to bound the re-
source availability for RTNs in polynomial time. These
bounds can be used to provide early termination of search
branches in the process of generating temporally flexible
schedules while maintaining soundness and completeness.
Both (Muscettola 2002) and (Frank 2004) provide bounds
that are tight, in the sense that they justify the resource
bound by proving the existence of a feasible schedule; tight
bounds enhance the ability to support early termination.

More recent work (Frank & Morris 2007) has applied this
approach to activities with resource impacts that are linear
in the duration of the activity. This work shows that certain
types of discretizations of the activities can provideexactre-
source bounds when the constraints are integer-valued. The
main drawback of this work so far is that the discretization
greatly increases both the set of times where the resource
availability must be recomputed and the number of activi-
ties that must be considered in the calculation. In this paper,
we reduce the set of times that must be considered to a poly-
nomial size, and describe methods to control the number of
discrete activities needed to calculate tight bounds.

Notation and Definitions
We will assume LRTNs have a single resource. We will also
assume a constant resource upper boundRub and a lower
bound of0, and that the resource initially hasRub available
capacity. This easily generalizes to varying initial capacity,
piecewise constant upper bounds, and (with some additional
work) to piecewise linear upper and lower bounds.

Let A be the set of all activities of an LRTN andn =
|A|. Let A ∈ A be an activity. LetAs be the start event
of activity A, and letAe be the end event ofA. If G is
a ground schedule,AG

s denotes the value ofAs in G, and
similarly for AG

e . Activity durations and resource rates are
denoted byAd andAr, respectively. IfAr < 0, thenA is
said to be aconsumer; if Ar > 0, thenA is aproducer.

Each activityA has associated with it a constraint:
As + Ad = Ae



Let E be the set of timepoints (start or end times of activi-
ties) and supposeE1, E2 ∈ E . There may be manysimple
temporal constraintsof the form

x1 ≤ E1 − E2 ≤ x2

We let the “dummy” activityH indicate the scheduling hori-
zon, thusHs = 0, He = h and (obviously)Hd = h.
Absolute constraints on events are then translated into sim-
ple temporal constraints between events andHs or He.
(For example, the constraintAs ∈ [x1, x2] translates to
x1 ≤ As − Hs ≤ x2.) Recall that an STN can be trans-
formed into adistance graph(essentially rewriting each
lower-bound constraintx1 ≤ E1 − E2 as an upper-bound
constraintE2 − E1 ≤ −x1, so that all the constraints are
upper bound constraints). For a consistent STN, we denote
the shortest path distance from a timepointE1 to a time-
point E2 in the distance graph byd(E1, E2). This provides
an upper-bound on the temporal distance fromE1 to E2;
thus,EG

2 −EG
1 ≤ d(E1, E2) in every grounded scheduleG.

Note thatd(Hs, E) and−d(E,Hs) provide absolute upper
and lower bounds onE; we denote these byEub andElb,
respectively. An STN may be regarded as a concise repre-
sentation of a flexible schedule.

Given a ground scheduleG, we denote byAvailG(t) the
available resource att in G:

AvailG(t) =
∑

A∈A|AG
e ≤t

ArAd +
∑

A∈A|AG
s ≤t<AG

e

(t−AG
s )Ar

.
We denote byLmax(t) the maximum availableresource

at a timet over all schedules, and byLmin(t) the minimum
available resource att. Thus,Lmax(t) = maxG AvailG(t)
and similarly forLmin(t). We sayG justifiesLmax(t) if
Lmax(t) = AvailG(t). We denotemaxt Lmax(t) by L+

max

andmint Lmax(t) by L−max (similarly for L+
min andL−min).

Note thatLmax(t) and Lmin are functions that tightly
bound the availability of the schedules; we call these the
upper and lower envelopes, respectively, following (Muscet-
tola 2002).

The theory of maximum flows is used to calculate the re-
source bounds. It is described in standard textbooks, for ex-
ample (Ahuja, Magnanti, & Orlin 1993). LetF be a flow
graph andflowa flow; we will denote pipes of the flow graph
by p. As in (Muscettola 2002), we will denote theresidual
capacityof a flow over a subset of the flow graphG ⊂ F
by rflow(G). That is,rflow(G) denotes the cumulative re-
maining capacity of pipesp ∈ G reachable from the source
for the maximum flow.

We introduce the following definitions:

Definition 1 Given an LRTN, we define theinstantsI as⋃
E∈E({Elb} ∪ {Eub}).

Definition 2 Given an LRTN, at timet an eventE ∈ E is
pendingat t if Elb ≤ t ≤ Eub, openat t if t ≤ Elb and
closedat t if Eub ≤ t. An activityA is closedif Ae is
closed,openif As is open,completely pendingif As andAe

are pending, andpartially pendingotherwise.1

1Note an event may be both pending and open/closed, but an
activity with duration> 0 is in only one state.

Definition 3 Given an LRTN and a pair of activitiesA and
B, A anti-precedesB if d(Ae, Be) ≤ 0.2

Definition 4 Given an LRTN, a set of activitiesS is a pre-
decessor setif, when activityS ∈ S, then every activityT
thatS anti-precedes is also inS.

Definition 5 Given an LRTN and a ground scheduleG, G is
split at t if there is some activityA such thatAG

s < t < AG
e .

A schedule that is not split att is intactat t.

Overview
For LRTNs with integer constraints, it has been shown
that Lmax(t) and Lmin(t) can be found inO(h(nh)6)
time (Frank & Morris 2007). The results are limited to
the case where the activity durations and resource consump-
tion rates are constant and provided as inputs to problem
instances. We preserve this restriction; to emphasize this,
we henceforth denote the durations and rates byad andar,
respectively, for an activityA. Also, in this paper we con-
sider onlyLmax(t); by symmetry, the results forLmin are
similar.

In order to findLmax(t), (Muscettola 2002) shows that
it is sufficient to findLmax(t) at the instantsI, since the
envelope is constant between instants. The maximum flow
problem can be solved using many well-known polynomial
time algorithms; for RTNs withn events, thus, the complex-
ity of finding Lmax(t) andLmin(t) is polynomial. Suppose
we are given an RTN withc(X) denoting the resource im-
pact of eventX. To find the value of the schedule justifying
Lmax(t), a maximum flow problem is constructed using all
anti-precedence links derived from the arc-consistent STN.
The rules for building the flow problem to findLmax(t) are
as follows: all pending events are represented by nodes of
the flow problem. Ifd(X, Y ) ≤ 0 then the flow prob-
lem contains an arcX → Y with infinite capacity. If
c(X) > 0 then the problem contains an arcσ → X with
capacityc(X). If c(X) < 0 then the problem contains an
arc X → τ with capacity|c(X)|. (The flow problem for
Lmin(t) is constructed similarly, except ifc(X) > 0 then
the problem contains an arcX → τ with capacityc(X),
and if c(X) < 0 then the problem contains an arcσ → X
with capacity|c(X)|.) The maximum flow of this flow net-
work matches all possible production with all possible con-
sumption in a manner consistent with the precedence con-
straints. An RTN and associated flow problems for find-
ing Lmax(t) andLmin(t) are shown in Figure 1. The set
of events reachable in the residual flow network is a prede-
cessor set (since the infinite pipes resulting from the anti-
precedes relation always have residual capacity), and is de-
notedPmax(t). Lmax(t) is justified by scheduling all pend-
ing events inPmax(t) beforet, and all other pending events
aftert. The tightness of the bound is guaranteed by proving
that adding the constraints that force these activities to occur
before or aftert is consistent with the original STN.

The approach in (Frank & Morris 2007) for findingL+
max

involves chopping all activities into unit-sized pieces, and

2ImpliesBe − Ae ≤ 0, i.e., every part ofB non-strictly pre-
cedes some part ofA, in every schedule.
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Figure 1: An RTN, the flow problem to findLmin(9), and
the flow problem to findLmax(10).

solving the maximum flow problem described in (Muscet-
tola 2002) at integer times. Then findingL−max involves
a further chop of units into two pieces of sizebtc and
1−btc and solving a time-varying linear programming prob-
lem based on the maximum flow formulation, for between-
integer times.

The complexity of this approach scales according to the
number of maximum flow/linear programming problems
that need to be solved, and according to the size of each such
problem. In the previous approach, separate maxflow/LP
problems need to be solved at each integer timepoint, so the
number of such is bounded byO(h). The size of each prob-
lem depends on the number of chopped activities, which is
bounded byO(nh), but may be considerably less if the ac-
tivities have short durations relative to the horizon. If the
maximum duration of all activities is D, then the number of
chopped activities is at mostnD.

The size of the horizon is typically very large in real prob-
lems. For example, it may be as large as the number of sec-
onds in a week (604800), which limits the usefulness of the
current approach.

Although chopping to units does not lead immediately to
a practical algorithm, it provides a useful theoretical charac-
terization of the schedules that determine the envelope. In
this paper, we exploit that to prove a result (called the “Per-
sistence Theorem”) showing that once an activity piece be-
comes part of the set determining the maximum availability
value at some timet, it never leaves it for larger values of
t. This allows us to bound the number of slope changes and
leads to a new algorithm without the need to solve a sepa-
rate problem at each integer time. This eliminates the firsth
factor.

We also make progress on the otherh factor, which arises
from the need to chop each original activity into as many as
h pieces, but do not eliminate it completely. As mentioned

above, this is more accurately estimated as the number of
chopped activities. We present a generalization of the re-
sults in (Frank & Morris 2007) that requires chopping only
until certain “drag alignment” conditions are achieved. A
“worst case” example shows that may still result in chop-
ping to units, but that is an improvement over the previous
method, which required chopping to units in all cases.

Persistence Theorem
If we could bound the number of places in the envelope
where slope changes can occur, thenLmax(t) can be found
by calculating the slope only where it changes. The compu-
tational complexity of findingLmax(t) will drop as long as
the number of places the slope can change is smaller than
h and those places can be found efficiently. Recall that for
RTNs, changes ofLmax(t) can only occur at theO(n) in-
stants, and the instants are found in linear time. For LRTNs,
however, previous work has shown that local minima can oc-
cur at times that are non-instant and even non-integer. Local
maximacan only occur at integer times, but the following
example shows that the times at which these changes occur
may not be instants either.

Lmax

cd =3; cr = -3

bd =3; br = 2

ad =3; ar = -1

-1
0

1

Schedule 
B early,C Late

Sliding B to delay C
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[0,0]
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1 2 31/3 2/3

Figure 2: An LRTN for whichLmax(t) has a slope change
at a time that is not an instant.

The example in Figure 2 consists of3 activitiesA,B,C
with rates indicated and durations3. The following con-
straints hold:

As = 0, Bs ≥ 0, Cs ≥ 0, Cs −Bs ≤ 1

There are no absolute upper bounds, so 0 and 3 are the only
instants. Let availability be 0 initially and considert ≤ 1.
The best schedule for all these times is whereBs = 0 and
Cs = 1. ThusLmax(t) rises linearly betweent = 0 and
t = 1.

Now considert ≥ 1. In this case, the best schedule is to
let B and C slide to the right. (Otherwise C would kick in.)
Thus, the availability decreases to 0 att = 2.



We see that theLmax(t) has a peak att = 1, which is not
an instant, and it slopes down to 0 on both sides3.

In spite of this, we can nevertheless bound the number of
slope changes, and thus the number of points where we need
to solve for the envelope. The key idea is to analyze how the
set of activities that determines the maximum availability
evolves with time.

The availability of a resource at a timet is determined by
the set of activities or activity portions (if the activity over-
lapst) that occur prior tot. We show this set grows mono-
tonically with t, i.e., once an activity or activity portion en-
ters this set, it never leaves it. This result also applies in the
context of events with instantaneous resource impact. Al-
though not specifically called out in (Muscettola 2004), the
result is implicit in the argument (middle left column page
6) that “F (Pmax,i−1) can be ignored during the computa-
tion ...” (of F (Pmax,i) and subsequently). We isolate the
result and give a more intuitive proof here.

The set of activities/events that occur prior to timet de-
termines the availability at timet. The maximum flow ap-
proach identifies a unique setPmax(t) that maximizes the
incremental availability at timet, and is minimal in terms
of the number of activities/events among such sets. If we
add to this the closed set at timet (which also contributes
to the availability att), we see that there is a unique set
Qmax(t) that can occur prior tot that maximizes the avail-
ability at timet, and is minimal in terms of the number of
activities/events.

Theorem 1 (Persistence Theorem)The setQmax(t) in-
creases monotonically witht.

Proof: We show that the maxflow network can be reformu-
lated in a way that makes the result immediate.

First note that the network can be modified so that all
intermediate (not source or sink) pipes go directly from
producers to consumers. That is, we can delete the pro-
ducer/producer and consumer/consumer pipes. Since the an-
tiprecedes relation is transitive, and intermediate pipes have
infinite capacity, this does not alter the feasible flows in the
source and sink pipes, and so does not change thePmax(t)
solutions.

Second it does no harm to include nodes and intermediate
pipes forall the events in the network (even if they are not
in the pending set). We need only omit the source/sink pipes
for the open and closed events; since there will then be no
flow through the nodes, they cannot affect the rest of the
network so the maximum flow solution is unchanged.

Next we can see that in fact the sink pipes for the con-
sumer events that are open can be included in the network
without affecting the maximum flow solution. The reason
for this is that any flow to these consumers can only come
from producers that anti-precede them. These producers will
also still be in the open set and so will have zero flow. Thus,
the flow to the open consumers will be zero even if their sink
pipes are included in the network.

3The consumerA constrained to start at 0 makest = 1 a local
maximum ofLmax(t); eliminatingA leads to a slope change at
t = 1 butLmax(t) remains at1

Similarly, producer source pipes can be retained in the
network even after they become closed, since the only con-
sumer events that can drain them will have had their sink
pipes removed. (However, the contribution of these produc-
ers to the availability will now appear in the network contri-
bution rather than the closed set contribution.)

With this reformulation, the incremental changes to the
network as time advances consist of (1) adding source - pro-
ducer pipes (as they enter the pending set) and (2) deleting
consumer - sink pipes (as they exit the pending set). In-
tuitively, adding producers and deleting consumers means
that the competition for consumers to drain the flow from
the producers can only get worse over time, so if a source
pipe to a producer becomes unsaturated in a maximum flow
at some time, it will stay unsaturated at subsequent times.
More formally, adding a source pipe or deleting a sink pipe
cannot create a new augmenting path for an unsaturated pro-
ducer node. This means the producer will continue to be in
Qmax(t).

2

In the context of LRTNs, theLmax(t) problem can be for-
mulated as a maximum flow network in terms of the chopped
activities (Frank & Morris 2007), which allows us to apply
the Persistence Theorem. Note that an original (unchopped)
activity contributes at least partially to the availability if its
earliest chopped part contributes to the availability, and it
contributes totally if its latest chopped part contributes to
the availability. Thus, the Persistence Theorem can be ap-
plied to the original activities also. Suppose we letTmax(t)
denote the set of (original) activities that contribute totally to
the maximum availability and letSmax(t) denote the set of
activities that contribute at least partially but not totally. We
will also letUmax(t) be the set of activities that do not con-
tribute, i.e., the activities that are neither inSmax(t) nor in
Tmax(t). Note that activities can move only fromUmax(t)
to Smax(t), Smax(t) to Tmax(t), or Umax(t) to Tmax(t).
Then the Persistence Theorem allows us to conclude that
each ofSmax(t) and Tmax(t) changes its composition at
mostO(n) times ast increases.

Now recall the equation

AvailG(t) =
∑

A∈A|AG
e ≤t

arad +
∑

A∈A|AG
s ≤t<AG

e

(t−AG
s )ar.

If we know the setsSmax(t) andTmax(t) that contribute to
the maximum availability att, we can use this equation to
formulate a linear program to determine a scheduleG that
maximizes the availability at timet. Thus, for fixedTmax(t)
andSmax(t) and fixedt, we wish to maximize∑

A∈Tmax(t)

arad +
∑

A∈Smax(t)

(t−As)ar

over the variablesAs andAe for everyA ∈ A, subject to
the STN constraints and the additional constraintsAe ≤ t
for eachA ∈ Tmax(t), As ≤ t ≤ Ae for eachA ∈ Smax(t),
andt ≤ As for eachA ∈ Umax(t).

We would like to avoid having to solve this LP in-
dividually for every value oft for which a particular



Smax(t)/Tmax(t) pair is valid. (We will call this anS/T re-
gion.) Notice that the objective and the constraints of this
LP are linear int. Thus, the feasible region witht added
to the set of variables is still a convex polytope. It follows
that the maximum objective solution ast increases will be
piecewise-linear and convex int.

It is well known that the set of all solutions to an LP corre-
sponds to the feasible region when some of the inequalities
are changed to equalities, and the ones that are changed can
be identified by solving the dual problem. Note that chang-
ing inequalities to equalities in the above problem amounts
to tightening the STN constraints. Thus, the set of all so-
lutions can be represented as a tighter STN. Recall that any
STN has a unique earliest-time solution. We will refer to this
as the earliest-time solution of the above LP. This “canoni-
cal” solution provides a useful theoretical tool for deriving
results about the maximum availability curve.

The succession of earliest-time maximum-availability so-
lutions for t, ast advances, may be visualized as a kind of
“movie.” Of particular interest are the “trajectories” of in-
dividual activities with respect tot, which we can analyze
in part by determining the inequalities that become equal-
ities. Note these cannot includeAs = t or t = Ae for
any A ∈ Smax(t); otherwiseA would necessarily be in
Tmax(t) or Umax(t). However, they may includeAe = t
for some of theA ∈ Tmax(t) andt = As for some of the
A ∈ Umax(t). Apart from the LP-derived equalities, an
activity A in Umax(t) will also be forced to move by the
t ≤ As inequality oncet reaches the absolute lower-bound
of A. Thesemovingactivities may in turn push or pull other
activities via the STN constraints. Otherwise activities re-
main stationary in the earliest-time solution. Thus, activities
can either move along witht (maintaining a constant sepa-
ration fromt), or stay fixed in absolute time such thatt can
pass them by.

Supposet0 is the initial time of the S/T region. Using this
approach, we can solve the dual LP fort0 and t0 + ε for
some smallε, identify the moving activities, and project for-
ward the earliest-time solution. Because of the linearity and
convexity overt, the projected values of the variables will
provide a solution until we hit a “boundary” where one of
the STN ort ≤ Ae bounds is reached and would be violated
if we projected further. (This includes the case where we be-
gin to push anA in Umax(t) by virtue of reaching its lower-
bound.) At that point we can re-solve and project again and
thus trace out the whole piecewise-linear maximum avail-
ability curve for the S/T region where thisSmax(t)/Tmax(t)
pair is valid. We remark that whether an activity is moving
or stationary can vary from projection to projection within
the S/T region.

Note that at = As equality for A ∈ Umax(t) cannot
cease to be true after a re-projection since activities can only
keep up or fall back relative tot, and falling back would
imply A is no longer inUmax(t). Also, if anAe = t equality
ceases to be true after a re-projection, it can never be true
again becauseAe can never “catch up” tot. Furthermore,
the absolute lower-bound of an activity inUmax(t) can be
reached only once. Thus, a particular “boundary” constraint
can be hit only once for this S/T region.

At the transition from one S/T region to another, it is pos-
sible to have sudden (discontinuous) changes in the earliest-
time solution. However, by the Persistence Theorem activi-
ties can only jump backward (to earlier times); there can be
no sudden jumps forward. Thus, the “can’t catch up” argu-
ment in the last paragraph applies across the whole horizon,
and a slope change caused by a particular constraint can be
hit only once for all the regions.

The number of STN andt ≤ Ae constraints isO(n2),
so there can be at mostO(n2) slope changes (i.e. pieces)
resulting from reaching constraint bounds. (Generalizing
Figure 2 by adding independent pairs of producers and con-
sumers likeB andC with maximum separation constraints
can lead to linear slope changes between instants, but we
do not yet have a good example of quadratic slope changes
arising due to constraint bounds.) There can be an addi-
tional O(n) changes resulting from transitions between re-
gions. Thus, computing the maximum availability curve for
the entire horizon involves solvingO(n2) + O(n) = O(n2)
LP problems. Unlike previous work, we do not need to for-
mulate the LP using the maximum flow problem; it requires
only O(n) LP variables (we must choose the start times for
activities inSmax) and at mostO(n2) constraints.

However, the above analysis assumes we know where the
different regions start and end. We still need to determine
the specific times where theSmax(t)/Tmax(t) pair changes.

Determining the S/T Regions
We now consider how to determine the specific times where
Smax(t)/Tmax(t) pair changes, or equivalently to determine
when an individual activity enters theSmax(t) andTmax(t)
sets. One way of doing this is to chop the activities to unit
pieces and solve the maximum flow network at integer times
as in the previous work. This will tell us when the different
units come intoQmax(t). However, this would not reduce
the complexity.

If we focus on determining when a specific unit piece en-
tersQmax(t), we can do better. We can do a binary search
over the horizon looking for the integer time when the piece
first comes in. The search itself requires solvingO(log h)
flow problems, which is linear in the compact representation
of the problem. After solving each flow problem at timet,
we ask whether the first (temporally ordered) unit sized com-
ponent of any activityA is now inQmax(t), when it was not
in Qmax(s). If so, we conduct a classical binary search to
determine whenA enteredQmax. (It requireslog2 h bits
to specify the value ofh.) However, we still need to solve
maximum flow problems at each of thelog h steps.

The overall complexity of this approach is as follows:
O(n6) (O(n2) linear programming problems, of complexity
O(n3) each at worst (using Karamakar’s algorithm, e.g.) for
each ofO(n) S/T partitions, plusO(log(h)n6h5) (O(log h)
flow problems ofO(n5h5) worst case (using Edmunds Karp,
e.g.) for each ofn activities.

The average case complexity is significantly smaller than
this. Simplex often has performance ofO(n) on average, re-
ducing the first factor toO(n3); flow problem solvers are of-
ten closer toO(n2) on sparse problems, it is likely that fewer



thanlog h flow problems must be solved, and it is likely that
there are fewer thann2 slope changes inLmax(t).

Notice the difference between this approach and the pre-
vious approach; we no longer have different computational
problems to identifyL+

max andL−max, but we find the whole
envelope by calculatingLmax(t) at each time when the
slope is known to change. We do not need the chopped net-
work to calculateLmax(t) itself. We still need to search for
times whenQmax(t) changes, and this part of the search
does require solving the flow problem on the chopped net-
work. As a result, we have dramatically reduced the impact
of h on the complexity, but not completely eliminated it.

Reduced Chopping
TheD discussed above arises from the need to chop activ-
ities to unit size in order to take advantage of the results
in (Frank & Morris 2007). Thus, the key to further improve-
ments is reduce the amount of chopping needed to apply the
maximum flow method.

One simple possibility is a transformation of units. If
the greatest common devisor (gcd) of the integer constraint
bounds is larger than 1, then we can divide all of the
constraint bounds (including durations) by the gcd without
changing the essential problem. This reduces the required
amount of chopping. For example, in a practical application,
constraints might have a granularity of 15 minutes while ac-
tivities range in duration up to 2 hours in multiples of 15
minutes. In this case, the gcd is 15, and soD = 8.

A more sophisticated approach is to reformulate the max-
imum flow approach in a way that requires less chopping.
This takes advantage of the fact that the network can be
modified so that all intermediate (not source or sink) pipes
go directly from producers to consumers. (As discussed in
the proof of the Persistence Theorem, this does not alter the
feasible flows in the source and sink pipes, and so does not
change thePmax(t) solutions.) This suggests that we focus
on the anti-precedes relationship specifically between pro-
ducers and consumers. Intuitively, we want to bring as much
production as we can into theQmax(t) set, but that pro-
duction is countered by the cost of the consumption that is
dragged in also by the producer/consumer constraints. The
cost of a particular consumption may be shared by several
producers, and we seek a balance that maximizes the avail-
ability at t.

The maximum flow method is designed to find the op-
timum balance by seeking the best match of consumption
to production. However, the matching in our case is com-
plicated by the partial dragging that can result from the
temporal constraints, so only portions of the consumers get
matched to portions of the producers. Chopping to units en-
sures there is no partial dragging. However, it turns out a
weaker condition can achieve the same effect.

First we define some new concepts. Intuitively, the drag
relationship between a producer and a consumer is the tem-
poral relationship that results when the producer is pulled
to the left (i.e., earlier), and the consumer is pulled to the
right, until the constraint between them becomes active. We
can then consider the Allen relationships in this context. Of

particular interest are the cases where the consumer Starts-
Within the producer, and where the producer Ends-Within
the consumer. If the former case, we say there is a leading
producer; in the latter case, there is a trailing consumer. Intu-
itively, a leading producer “sticks out in front” and a trailing
consumer sticks out behind.

More formally, we say a temporal constraint in which a
producerA drags a consumerB has aleading producerif
0 < d(As, Bs) < ad. Similarly, it has atrailing consumerif
0 < d(Ae, Be) < bd. This leads to the following result.

Theorem 2 Suppose the drag relationships are such that
there are no leading producers or trailing consumers. Then
Qmax(t) contains only complete activities (i.e.,Smax(t) is
empty).

Proof: We need only show that any producers inQmax(t)
are complete. Since there are no trailing consumers, com-
plete producers can only drag (i.e., force intoQmax(t)) com-
plete consumers.

Let P be the set of incomplete producers inQmax(t).
Suppose contrary to the theorem thatP is non-empty. Let
C be the set of incomplete consumers inQmax(t). Since
complete producers can only drag complete consumers, the
incomplete consumers inC can only be dragged by incom-
plete producers inP. Note that each producerA in P must
drag at least one incomplete consumer; otherwise the avail-
ability could be increased simply by movingA completely
into Qmax(t).

Now let
r =

∑
A∈P

ar +
∑
B∈C

br

i.e., r is the net rate of production by the activities in
P and C. Note that if r is negative, the optimality of
Qmax(t) is contradicted since the availability could be in-
creased by moving a portion of the incomplete activities out
of Qmax(t). On the other hand, ifr is positive, the availabil-
ity could be increased by moving an additional portion into
Qmax(t). Finally, if r is zero, the minimality ofQmax(t) is
violated. Thus,P must be empty and the result follows.2

The significance of Theorem 2 is that it allows us to chop
only to the point where there are no leading producers or
trailing consumers. Recall thatA is a leading producer
with respect to a consumerB when0 < d(As, Bs) < ad.
We can eliminate this occurrence by choppingA at a point
d(As, Bs) after As. Similarly, a trailing consumer occur-
rence where0 < d(Ae, Be) < bd can be removed by chop-
ping B at a pointd(Ae, Be) beforeBe. However, it is easy
to see that each chopping of a leading producer may create
new trailing consumers and vice versa, so the chopping pro-
cess must be iterated. With integer constraints, the activities
cannot be chopped to smaller than unit pieces, so the itera-
tion must terminate.

We now present an example showing that the chopping
may still proceed to units in the worst case, so, unfortunately,
this does not eliminate the exponential factor in general.

PRODUCERSA0, A1, ..., An

CONSUMERSB0, B1, ..., Bn

DURATIONS (all same)D = 2n.
DRAG CONSTRAINTS



d(A0,s, Bi,s) = 0 for i = 1, ..., n

d(Ai,s, B0,s) = 0 for i = 1, ..., n

d(Ai,s, Bi,s) = D/2i for i = 1, ..., n

We show that the activities get chopped into2n pieces by
induction onn. The result is easily seen forn = 1. Assume
it is true for n. Consider then + 1 case. By the induc-
tive hypothesis, bothA0 andB0 are chopped into2n pieces
by the i = 1, ..., n subset of the constraints. These chops
are propagated, respectively, toBn+1 andAn+1. Then the
drag relationship betweenAn+1 and Bn+1, which is off-
set byD/2n+1, subdivides each of the chops in bothAn+1

andBn+1 into two further pieces, i.e., they are chopped into
2n+1 pieces in all. These additional chops then get propa-
gated back toA0 andB0 and from them to all theAi and
Bi. The result follows.

A0

B0

A1

B1

[0,0]

[0,0]

[1,1]

(a)

A0

B0

A1

B1

A2

B2

[0,0]
[0,0]

[0,0]

[0,0]

[2,2]
[1,1]

(b)

Figure 3: An LRTN exhibiting exponential chopping to en-
force completeness ofQmax(t).

Related Work
Problems involving activities with linear resource impact
have been considered in two other papers (Beldiceanu &
Poder 2007) (Kumar 2005), besides the (Frank & Morris
2007) paper cited earlier.

In (Beldiceanu & Poder 2007), the authors consider tasks
consisting of sequences of subtasks where each of the sub-
tasks has linear resource impact. The complexity of comput-
ing the envelope for a single resource isO(p log p) wherep
is the number of subtasks. However, the task model does not
allow any additional constraints between the subtasks (such
as the STN constraints considered here) and thus avoids the
delicate balancing issues.

In (Kumar 2005), the author considers a model that in-
cludes what are calledType 3actions that could have linear
(or more general) resource impact. However, the paper re-
stricts Type 3 actions to beconsumersonly. This simplifi-
cation also avoids the difficult balancing issues that arise for
LRTNs when producer/consumer interactions are included
in the picture.

Conclusions and Future Work
While not completely eliminating the pseudo-polynomial
aspect of the envelope problem for LRTNs, we have re-
moved one of theh factors and reduced the other to a point
where it may be useful in practical problems. We have also
answered some outstanding questions about the nature of
the envelope; in particular, we have shown that even though
slope changes can occur at non-instants, the number of such
changes is nevertheless limited to a polynomial inn.

Since we have not found an example of quadratic slope
changes between S/T boundaries, it is possible that the
bound on the number of such slope changes might be loose.
For example, Figure 2 is not impacted if multiple consumers
are constrained to the producer in the same manner; the pro-
ducer ”pushes” all of the consumers ahead of it to maintain
the envelope aftert = 1. A proof of a tighter bound will
shave another factor ofn off of the complexity. Some practi-
cal improvements may also be possible. For example, rather
than searching the entire horizonh to find the S/T bound-
ary for an activity, we need only search where the activity
is pending. We could also exploit precedences that restrict
the order in which activities can enter the S/T sets. More
promising yet is the prospect of a complete formulation of
the problem of findingLmax(t) as a linear program, either
directly or based on a compact encoding of the maximum
flow or minimum cut representation. While such a formula-
tion may avoid all factors ofh in the complexity, to date all
such formulations we have found are nonlinear programs.
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